
Chapter 1

The Fundamental Process of
Measurement

Measurement is the process of assigning numbers to properties. This process is so
basic that often we don't think much about it. However, failing to think about some
fundamental aspects of measurement can turn out to be a costly mistake, for several
reasons:

� We may attach unwarranted signi�cance to aspects of the numbers which do
not convey meaningful information.

� Wemay fail to simply data when we could easily do so, and consequently waste
resources.

� We may manipulate our data in ways that destroy the information they contain.

� We may perform meaningless statistical operations on our data.

In this chapter, we review the basics of measurement theory in a bit more detail
than you probably saw in your undergraduate course. Then we sketch some of the
practical implications of this theory.

1.1 Levels of Measurement
Measurement theory deals with what happens when numbers are assigned to objects
in an attempt to describe some property of the object. For example, suppose we are
measuring the amount of time it takes several events to occur by assigning numbers to
each event. Numbers have properties, and quantities have properties. These properties,
which are closely related to the concept of levels of measurement, are summarized in
Table 1.1.
For example, consider two numbers. These numbers have a �nominal,� or �same-

difference� property, namely, they are either the same or different. Now consider two
amounts of time. These quantities also have a �nominal,� or �same-difference� prop-
erty.
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Table 1.1: Some Identi�able Properties of Numbers and the Quantities They Measure

Property Description
Nominal Two numbers or attributes are either the same or different. For example,

you and I may have the same number of children, or different numbers
of children.

Ordinal If two numbers or attributes are different, one is either greater then or less
than the other. For example, if we are different ages, I am either older or
younger than you.

Interval If pairs of attributes or numbers A,B and C,D are compared, the differ-
ence between A and B and the difference between C and D have relative
sizes.

Ratio If two numbers or attributes are compared they can have a ratio. For
example, 2 is twice as large as 1, and I may weigh twice as much as you.

We see that quantities have properties, and numbers have properties, and these
properties can be very similar. When we assign numbers to quantities so that the prop-
erties of the numbers match the properties of the quantities, we have good measure-
ment. When the properties of the numbers do not match the properties of the quantities
they are assigned to, we have bad measurement.
There are several identi�able properties of numbers and quantities, and they form

a hierarchy. To the extent that a property of the quantities is captured by a numerical
assignment, we achieve a certain level of measurement. First, let's review the properties
of numbers and quantities that we will be trying to match

1.1.1 Nominal Measurement

Two attributes are either the same or different. Two numbers are either the same or
different. If numbers are assigned to a group of objects so that any two objects are given
the same score if and only if they have the same value on the attribute being measured,
we say the numbers have achieved a nominal level of measurement.
Mathematically, we express this in the following de�nition.

De�nition 1.1 (Nominal Measurement) Let objects A and B have values V (A) and
V (B) on the attribute being measured. LetM(A) andM(B) be the scores assigned to
A and B by the measurement process. We say measureM achieves a nominal level of
measurement when for all pairs of objects A and B,

M(A) =M(B) i� V (A) = V (B)

In the preceding de�nition, the symbol �i�� stands for �if and only if.�
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Table 1.2: Levels of Measurement - An Example

True WatchV WatchW WatchX WatchY Watch Z
Athlete Time (Nominal) (Ordinal) (Ordinal) (Interval) (Ratio)
A 10 23 11 2 21 20
B 11 12 14 3 23 22
C 13 20 15 4 27 26
D 20 19 18 5 41 40
E 13 20 15 4 27 26
S 0 26 9 1 1 0

Example 1.1 (Levels of Measurement) Themathematical discussion of levels of mea-
surement is rather abstract, and the following numerical example may help illuminate
the various concepts. Suppose a group of athletes are trying out for the track team at the
university, and they are all being timed in the 100 meter dash. Several coaches record
times for each athlete. However, they use some very unusual stopwatches. The stop-
watches are at several different levels of measurement. Table 1.2 presents the �true�
times of the athletes in an arbitrary unit of time roughly (but not exactly) equal to 1
second. It also presents the times as recorded by the various stopwatches.(By the way,
Athlete S is a mild mannered student named Clark, who is often seen ducking into
phone booths, and occasionally wears strange-looking tee shirts with a large red �S� on
the front!)

If we examine the �true times� for the athletes, and compare them with the times
recorded by Stopwatch V , we see that the stopwatch has done an extraordinarily poor
job of re�ecting meaningful information about the athletes' performances.
However, Stopwatch V has captured the same-difference property in the true times.

If you examine any pair of values recorded by Stopwatch V , you can see that the two
measured values are equal if and only if the true times for those runners are equal.
So Athletes C and E both receive a score of 20, and all other athletes receive unique,
different values. Stopwatch V hasn't done very well, but is has recorded something, i.e.,
the nominal (same-difference) property, correctly. Consequently, we say it has achieved
a nominal level of measurement.

1.1.2 Ordinal Measurement

If two objects A and B have a different value on some attribute, then in many cases
they can be ordered. If so, A is either greater than B or less than B. Similarly, if two
numbers are different, they have an ordering. If numbers are assigned to a group of
objects so that the same-different property is captured and the ordering is captured as
well, we say the numbers have achieved an ordinal level of measurement.
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De�nition 1.2 (Ordinal Measurement) Suppose J objects Xj have attribute values
V (Xj) and measured valuesM(Xj) that satisfy the qualities of Nominal Measurement.
We say the measure M achieves an ordinal level of measurement when the measured
values also satisfy following property:

M(Xi) > M(Xj) i� V (Xi) > V (Xj)

Numbers achieve an ordinal level of measurement if they capture the same-difference
distinction in a set of attributes, and also re�ect a proper ordering. Examine the numbers
recorded by Stopwatch W . These values properly re�ect the nominal (same-different)
and ordinal (ordering) properties of the numbers. Two times recorded by the stopwatch
are the same if and only if the corresponding true times are the same. One time is greater
than another if and only if the true times have the same ordering. We say that Stopwatch
W has achieved an ordinal level of measurement.
Notice that the relative differences between the numbers recorded by StopwatchW

do not convey correct information about the relative differences in the true times. For
example, the difference in true times between Athletes B and C is twice as great as the
difference between athletes A and B. This fact is not represented correctly in the num-
bers recorded by StopwatchW . Hence, although the ordering of the numbers recorded
by this stopwatch is correct, the differences between values are basically worthless, and
add a misleading complexity to the data values.
To pursue this point, consider the numbers recorded by Stopwatch X . These num-

bers are also at the ordinal level of measurement. They capture the same-different prop-
erty and the ordering just as well as the numbers yielded by StopwatchW .
Does the simplicity of the numbers produced by Stopwatch X make you feel un-

comfortable? It should not. These numbers capture as much meaningful information as
those produced by StopwatchW , and they eliminate needless complexity.

1.1.3 Interval Measurement

An important aspect of an attribute is the amount by which objects differ on that prop-
erty. A measure can achieve an ordinal level of measurement, but not properly re�ect
the relative size of attribute differences, as we shall see in an example below. If, in ad-
dition to the nominal and ordinal properties mentioned above, the relative size of the
differences in the numbers assigned to objects by a measure accurately re�ects the rela-
tive differences in the attribute being measured, the numbers achieve an interval level of
measurement. Formally, all that is required to achieve this property is that, throughout
the scale generated byM , equal differences in a measure re�ect equal differences in the
attribute being measured. If this is true, then it can be shown that relative differences in
the measure re�ect relative differences in the attribute.

De�nition 1.3 (Interval Measurement) Suppose objectsXj have attribute values V (Xj)
and measured valuesM(Xj) that satisfy the qualities of ordinal measurement. We say
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the measureM achieves an interval level of measurement when

M(Xi)�M(Xj) =M(Xk)�M(Xl) i� V (Xi)� V (Xj) = V (Xk)� V (Xl)

Now consider 3 objects, A, B, and C. Suppose that, on the attribute value, they are
ordered and evenly spaced. (For example, V (A) = 10, V (B) = 5, V (C) = 0). Then
V (A)� V (B) = V (B)� V (C). Then the difference in the attribute between A and C
is twice as great as the difference between A and B, since

2[V (A)� V (B)] = [V (A)� V (B)] + [V (A)� V (B)]
= [V (A)� V (B)] + [V (B)� V (C)]
= V (A)� V (C)

And, from the de�nition of interval measurement, it immediately follows thatM(A) >
M(B) > M(C), and M(A) � M(B) = M(B) � M(C) This in turn implies that
M(A) �M(C) = 2(M(A) �M(B)):We can extend this argument inde�nitely, and
so when numbers achieve an interval level of measurement, they capture the same-
difference and ordering properties in a set of numbers, and the relative size of the dif-
ferences between values mirrors relative differences in the attribute being measured.
Examine the numbers produced by Stopwatch Y . Clearly, they satisfy the properties

of nominal and ordinal measurement, but they go further. Note that the difference in
times for Athletes B and C is twice as great as the difference in times for Athletes A
and B. Indeed, the relative differences for all pairs of values produced by Stopwatch
Y match the relative differences for the true times. Consequently, Stopwatch Y has
achieved the interval level of measurement.

1.1.4 Ratio Measurement

Stopwatch Y has achieved an interval level of measurement, but it has failed to re�ect
some important qualities of the true times. For one thing, the ratios of the numbers
produced for any two athletes by Stopwatch Y are not the same as the correct ratios
of true times. For example, the true times show that Athlete D took twice as long as
Athlete A, but the times recorded by Stopwatch Y (41 and 21) are not in the ratio of 2
to 1. Indeed, all of the ratios produced by Stopwatch Y are incorrect, in that they do not
match the ratios of true times.
Moreover, the zero point for Stopwatch Y also appears to be incorrect. Athlete S

took no time at all, yet Stopwatch Y assigns the athlete a nonzero time. Numbers which
re�ect all the properties of interval measurement, but also have correct ratio informa-
tion and a correct zero point are said to have achieved a ratio level of measurement.
Stopwatch Y has not reached this level.

De�nition 1.4 (Ratio Measurement) Suppose objectsXj have attribute values V (Xj)
and measured valuesM(Xj) that satisfy the qualities of interval measurement. We say
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the measureM achieves a ratio level of measurement if

M(Xj) = 0 i� V (Xj) = 0

and, as a consequence, for any objects Xi, Xj .

M(Xi)=M(Xj) = V (Xi)=V (Xj)

Clearly, stopwatch Z achieves a ratio scale of measurement.

1.1.5 Absolute Measurement

In some cases, one ratio scale is clearly more appropriate than any other scale, for
overriding reasons of convenience. In that case, we say that numbers that use the one
�best� scale have achieved an absolute level of measurement. For example, suppose we
were recording data for the number of children given birth to by a group of women in
Nashville. If 3 women had 0,1,2 children respectively, we could record 0,1,2 or 0,2,4
and still be at the interval level of measurement. (Do you see why?) But the former set
of numbers is simply better, because the quantity being measured has a natural corre-
spondence with the integers 0,1,2.

1.1.6 The Hierarchy of Measurement Scales

By now it is probably already obvious to you that measurement scales have properties
that form a hierarchy. That is, the scales are ordered, and each scale possesses all the
properties of the scales below it, plus additional virtues not present in the scales below
it.
In the following section, we pursue the notion of permissible transforms, the ways

that numbers at a particular measurement scale can be changed without destroying the
information in them. We �nd that permissible transforms also form a hierarchy.

1.2 Permissible Transforms for Measurement Scales
At this point, students comparing the �real times� with those in the last column of Table
1.2 sense that there is something vaguely arbitrary about the numbers in the table. Would
the discussion in Section 1.1 have differed substantively if the numbers in the �Real
Times� and �Stopwatch Z� columns had been exchanged? In virtually every important
respect, the answer is simply �No!� The entire discussion would have proceeded the
same way. Both sets of numbers, then, are clearly at the ratio level of measurement.
It seems that either column of numbers could be considered the �True Times,� and

either could be considered ratio measures of the true times. Does that mean there is
something arbitrary about these numbers? Indeed there is something arbitrary, just as
the choice to measure height in inches or centimeters is, in an important sense, arbitrary.
Many students, when encountering this example for the �rst time, prefer the times given
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Table 1.3: Permissible Transforms for Measurement Scales

Scale Permissible Transform
Absolute Y = X
Ratio Y = aX for a > 0
Interval Y = aX + b for a > 0
Ordinal Y = f(x) with f() monotonic strictly increasing

in the table as the �True times� over the numbers for Stopwatch Z. They seem more
�natural.�That is because, through familiarity, speci�c scales of measurement acquire
greater meaning for us. The second is a speci�c unit of time that we have been using
all our lives. The original �true times� in our example are in a unit approximately equal
to seconds, whereas the times recorded by Stopwatch Z are closer to half a second.
The former seem more natural. But if you think carefully about it, you will realize
that familiarity is the only advantage for this particular scale. If, many centuries ago,
originators of the watch had chosen a unit of time for the �second� half as long as the
one we use now, we might prefer the times given by Stopwatch Z.
The fact that one ratio scale contains all the meaningful information in any other

ratio scale means that preferences for one ratio scale over another are largely a matter
of habit and personal taste. In many important respects, the numbers we assign to
quantities are arbitrary. This raises an important question. �How can we transform a
set of numbers that are at a particular level of measurement and be certain we are not
destroying useful information?�
The answer is that each scale has its own class of �permissible transforms,� or equa-

tions by which the numbers can be tranformed without lowering the scale of measure-
ment. The permissible transforms for scales of measurement are shown in Table 1.3.
In the table, X stands for the original numbers, Y for the transformed values. The

permissible transform for a given scale is a numerical operation that we are allowed to
perform on the numbers without reducing the level of measurement. The scales form a
hierarchy, and the permissible transforms are also a hierarchy, in that, as we move up the
table, each permissible transform is a more restricted special case of the one below it.
In general, if you perform a transformation on a list of numbers that is only permissible
for a lower level of measurement, you will drop the level of measurement to this lower
level. So, for example, if you have ratio data and you
We see that there is no permissible transform (other than the identity function) for

numbers at an absolute scale of measurement. Numbers at an absolute level of measure-
ment already have the only values they are permitted to have.
Numbers at a ratio scale will not drop below that level if you multiply them by any

positive constant. (The constant must be positive to avoid reversing the order of the scale
values. For numbers at an interval level of measurement, the permissible transform is
the equation for any straight line with a positive slope a and y-intercept b. We will refer
to such a transformation as a positive linear transformation. For ef�ciency, often we
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simply will refer to such a transformation a linear transformation. Unless explicitly
stated otherwise, we assume throughout this text that linear transformations are order
preserving, i.e., have a positive slope. Numbers at an ordinal level of measurement will
retain their ordinal properties if they are transformed with any function that is order-
preserving. A function is order-preserving if it is monotonic and strictly increasing. If
you plot the function in a plane, the function line keeps going up from left to right.
Several comments are in order about the permissible transforms. Notice that they

form a hierarchy. As you increase the level of measurement, the permissible transforms
become increasingly specialized and hence increasingly restrictive. The permissible
transform at each level is a special case of the transforms at lower levels. For example:

� The identity transform Y = X is a special case of the multiplicative transform
Y = aX , with a = 1.

� The multiplicative transform Y = aX is a special case of the linear transform
Y = aX + b, with b = 0, etc.

Example 1.2 (Reducing the Level of Measurement) Suppose you have numbers that
are at a ratio scale of measurement, but you transform them with the function Y =
2X + 1. The numbers will drop to an interval level of measurement. If you re-examine
the numbers in Table 1.2on page 3, you may verify that the interval scale of measure-
ment for Stopwatch Y was generated with this transform from the �true times.�

1.3 Levels of Measurement in Behavioral Data
One reason that measurement theory is dif�cult to apply in practice is that many data
from behavioral sciences have an uncertain, or debatable level of measurement. If we
are measuring maze-running times with an accurate clock, or norepinephrine levels with
an accurate chemical assay technique, we can assert with con�dence that our data are
ratio measurement. If we measure performance by the rank a person obtained in a class,
we can say that the data are ordinal.
Unfortunately, many data seem to hover somewhere between ordinal and interval

measurement. For example, consider course grades of 80, 79, and 44 given to three
individuals A, B, and C. If grades were merely ordinal, absolutely no signi�cance
could legitimately be attached to the fact that A and B are 35 times closer together than
B and C.
However, most course grades are such that we would feel con�dent stating there is a

greater difference betweenB and C than there is betweenA andB, so obviously course
grades are better than ordinal. On the other hand, I would not feel con�dent saying
that the difference in knowledge between B and C is exactly 35 times as great as the
difference in knowledge between A and B. Taken as an indicator of knowledge, course
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grades appear to be �semi-interval,� that is better than ordinal but not quite interval.
How do you deal with such data?
In practice, people have taken two approaches.

� One group simply legislates the problem out of existence by declaring, in ef-
fect, that course grades are at an absolute scale of measurement. That is, your
performance in my course is de�ned as the grade I give you!

� The more liberal analysts admit there is a problem, but conclude that there is less
damage done by acting as though course grades are at an interval level of mea-
surement than by acting as though they are ordinal. Consequently, data analytic
procedures appropriate for interval data are applied.

1.3.1 Robustness in Statistical Analysis

The relationship between measurement theory and course grades is in an important
sense typical of what happens all the time in statistics.

� Theory and related procedures are developed on the basis of idealistic assump-
tions.

� These assumptions are often not quite true.

� The question then becomes, �How much damage is done by assuming an as-
sumption is true when it is actually false.�

This is our �rst introduction to the notion of robustness. Robustness analysis is
dif�cult to avoid in statistics, because more often than not the idealistic assumptions
necessary to make statistical derivations tractable are not quite true even in the best of
circumstances.

1.4 Levels of Measurement in Statistical Practice
Despite the problems posed by behavioral data, measurement theory has serious impli-
cations for statistical practice. Here are two.

� The discussion of permissible transforms highlights the fact that what you can
do to a set of numbers without destroying information they contain depends on
what information is there to be destroyed. You are free to do more to ordinal data
than you are to ratio data.

� Certain statistical operations depend for their meaning on the scale of measure-
ment of the data they are applied to. We must be particularly sensitive to whether
a transform that is permissible for a set of data alters the interpretation of a sta-
tistic calculated on those data.
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Table 1.4: Weights in Pounds for 3 Groups

I II III
150 160 170
160 140 180
170 180 190

Mean 160 160 180

Table 1.5: Mixed Measurement Scales (Weights in Boldface are in Kilograms)

I II III
150 160 170
352 308 396
170 180 190

Mean 224 216 252

Proposition 1.1 (Averaging Numbers from Different Scales) Unless all numbers av-
eraged are on the same measurement scale, the sample mean need not even be on a
nominal scale of measurement.

Proof. To prove the assertion, we simply need a counterexample to the assertion that
the numbers are at a nominal level. Suppose you have three groups of three people each,
and their weights in pounds, measured on an accurate scale, are as shown in Table 1.4.
Group I and Group II both have the same average weight, 160 pounds, while Group III
individuals average 180 pounds. These averages are on a ratio scale of measurement,
the same as the weights of the individuals.
Now suppose the second individual in each group had chosen to report their weights

in kilograms rather than pounds, and you had chosen to average the numbers as reported.
As you can see, if the numbers averaged are not all on the same scale of mea-

surement, the resulting averages need not be even at a nominal level of measurement!
Groups I and II have the same average weight, but the averages of the reported values
need not be the same if the values are not all reported on the same scale. This completes
the proof. �
Clearly, averaging pounds and kilograms is like the proverbial �comparing apples

and oranges.� This point is easy for most people to grasp in the context of the above
example. However, people frequently perform the equivalent of averaging pounds and
kilograms in more complex contexts, as we see in the following example.

Example 1.3 (Measurement Theory and Grading Policy) Consider the following ide-
alized version of something that happens quite frequently at universities. A course is
�team taught� by two professors. One professor teaches the �rst half and assigns a grade
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Table 1.6: Grading Practices for Two Hypothetical Professors

Professor
Performance Nizegy Meenie
Good 90 80
Average 85 65
Bad 80 50

Table 1.7: Performance of Three Students

Student Part 1 Part 2
A Good Bad
B Average Average
C Bad Good

for that half of the course. Another professor takes over the second half, and assigns
grades for that portion of the course. Grades from the �rst and second halves of the
course are then averaged to provide a �nal grade for students.

There are several technical problems with this procedure, and we will consider only
one very interesting issue here. The problem, in a nutshell, is that professors often have
different grading standards, different exam construction philosophies, different teaching
styles, that lead, in effect, to their grades being comparable to two different scales of
measurement for the same quantity.
Suppose, for simplicity, that there are three levels of performance in the course,

and that they are equally spaced along the continuum of �true performance.� The three
levels are �Bad,� �Average,� and �Good.� Any set of 3 numbers that is evenly spaced
and in the correct order will satisfy the de�nition of an interval scale of measurement
for these performance levels. In Table 1.6, we consider 2 such interval scales, which are
the scales of grading used by two different hypothetical professors.
We can see that Professor Nizegy gives easy grades, and does not distinguish very

much between good and bad performance. On the other hand, Professor Meenie gives
low grades, and the grades differ sharply between good and bad performance.
Suppose three students take a year long course that is �team taught� by Professor

Nizegy and Professor Meenie. Nizegy teaches the �rst half, and Meenie teaches the
second half. Imagine the situation shown in Table 1.7.
Over the course of the year, all three students were at an average level. For two

students, bad performance in one half was balanced by good performance in the other,
while one student performed at an average level all year. All three students should have
gotten the same grade in the course. Now let's see how they actually fared under the
team-teaching system. The grades obtained by the three students are shown in Table 1.8.
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Table 1.8: Grades Obtained by the Three Students

Student Part 1 Part 2 Course
A 90 50 70
B 85 65 75
C 80 80 80

Notice that the �nal grades obtained by the three students are not equal, even though
their performance was. Indeed, studentC got a grade a full 10 points higher than student
A!
The problem is, in a theoretical sense, virtually identical to what happens when

people average pounds and kilograms. Each professor grades on an interval scale of
measurement, but the two professors have different interval scales. Consequently, for
them to average their grades is the same as averaging pounds and kilograms, which are
two different ratio scales of weight.
A natural question to ask is �Can anything be done about this problem?� In essence,

we might do the same thing with course grades that we would do with body weights �
change them all to the same scale of measurement before averaging. With body weights,
we could convert all weights to pounds or all weights to kilograms before averaging.
With course grades, we can do very much the same thing. It is called �scaling,� and we
will talk about its technical aspects in great detail in a subsequent module.
Note that this problem generalizes to many other situations. If averaging grades

on different scales creates a problem within a single team-taught course, it also cre-
ates a problem when universities compute grade point averages across several courses.
Isn't the validity of these gradepoint averages also compromised? In a sense, they are.
Strictly speaking, grade point averages probably do not even achieve an ordinal level of
measurement. That is, some students who performed better than others will receive a
lower grade point average, because they took a disproportionate number of courses from
professors like Dr. Meenie. The question again revolves around robustness. We know
that the assumptions necessary to validly average numbers are violated by the grades
on students' transcripts. Most universities ignore this, and average them anyway. That
is why the intelligent consumer of such information does not place too much empha-
sis on minor differences in grade point average. Unfortunately, consumers of numerical
information are not always sophisticated, and the �fallacy of misplaced precision� is
commonplace in the analysis of data. Often people will apply analyses of enormous
sophistication and precision to numbers that simply cannot support such precision.
The preceding critique also implies that averaging grades across different exams

within a single course can also create problems. It is incumbent upon teachers to use
rescaling technology to reduce such problems. However, we should realize they can
never be eliminated entirely, and that minor differences in grade point average are un-
doubtedly meaningless.
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1.5 Precision and Accuracy in Numerical Data
In this section we discuss two fundamentally different types of data, which we call
discrete (or categorical) and continuous. There are some important and surprisingly
subtle technical issues related to the difference between categorical and continuous data,
and we will explore a few of them in detail.

1.5.1 Categorical Data

Some data naturally fall into discrete, discontinuous categories. Often, the number of
categories is small as well. An example is outcome of a soccer match, which for each
team is either a win, loss, or tie. Such data can typically be recorded easily, with no
error. Moreover, numerical calculations involving such data can also be error-free. For
example, we can readily calculate, without any error, the average number of wins for a
baseball team over the last ten years.

1.5.2 Continuous Data and Round-Off Error

Some quantities that we measure are in principle continuous, i.e., can take on any value
within certain limits. Body weight is such a quantity. Amount of time needed to run a
mile is another. In some cases, quantities that are continuous in principle are reported as
categorical data. For example, we are all familiar with questionnaires that ask us to rate
our feelings about some topic on a �5 point� scale. For example, you might be asked
�How con�dent are you that nuclear war will not take place again before 2010?� You
might then be presented with 5 alternatives, �Very Con�dent,� �Moderately Con�dent,�
�Uncertain,� �Moderately Uncon�dent,� �Very Uncon�dent.� Typically, the instructions
on the questionnaire will ask you to choose the alternative that �best� matches your
feelings. None of these descriptors may �t your actual feelings, in which case you
might engage in some kind of internal �round-off� process in order to select the best
alternative.
In this case, you have reduced a continuous quantity to a categorical one. When

continuous real number values are reported, they generally are only approximated. As
well, most computer data analytic systems maintain only an approximation of a real
number. Usually, the approximation is far better than we actually need for practical
purposes. When a real number is reported, we can talk about two aspects of the reported
value, precision and accuracy. Informally, precision refers to how precisely a value is
stated, while accuracy refers to how close a number is to the correct value. A number
can be very precise, yet very inaccurate. For example, if a person actually weighs 200.3
pounds, and his weight is listed as 156.19989544 pounds, the value would be stated
very precisely, but also very inaccurately.

De�nition 1.5 (Precision) The precision of an approximate real numberX is the total
number of signi�cant decimal digits in X .



14 Chapter 1. The Fundamental Process of Measurement

Table 1.9: Rounding Numbers to a Speci�ed Level of Precision

Original Level of Rounded
Number Precision Value
2:798765 2 2:80
29:4972 3 29:497
16:25 1 16:3
1242:1184 2 1242:12

De�nition 1.6 (Accuracy) The accuracy of an approximate real number X is the ab-
solute difference between X and the quantity it is measuring.

In one sense, continuous data are always reported as categorical data, since it is
impossible to record many numbers to their full level of accuracy with the decimal
system. In this text, we will always round off the last digit up if the next digit (to its
right) is greater than or equal to 5, and down if the next digit is less than 5. Table 1.9
gives examples of numbers rounded off to a speci�ed level of precision.

1.5.3 Nominal and Real Limits

When a set of numerical quantities is reported, we can speak of the Nominal Limits and
Real Limits for the set.

De�nition 1.7 (Nominal Limits) When a group of numbers is reported, the nominal
limits for the group are the lowest and highest reported values.

De�nition 1.8 (Real Limits) When a group of numbers is reported, the lower and
upper real limits for the group are, respectvely, the lowest value that the lower nominal
limit could have been rounded up from, and the highest value that the upper nominal
limit could have been rounded down from.

Example 1.4 (Nominal and Real Limits) Suppose three football players weigh 198,
212, and 235 pounds on a scale that accurately rounds weight to the nearest whole
pound. What are the nominal and real limits for this group of 3 numbers? The nominal
limits are 198 and 235. However, the lower nominal limit, 198, could in principle
represent a value as low as 197.5 pounds, so the lower real limit is 197.5. The upper
nominal limit of 235 could have been rounded down from any value below 235.5, so the
(non-inclusive) upper real limit is 235.5.
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Many psychology students encounter the notion of nominal and real limits in con-
nection with some elementary calculations on frequency distributions, particularly in
connection with �estimation of percentiles from grouped frequency data,� a topic we
shall discuss later. At this point, I want to take a rather lengthy digression to illustrate
some points which are truly fundamental to the study of statistics. The material is at
a very low level mathematically, yet illustrates the surprising subtleties one encounters
even in the most mundane areas of inquiry.
The preceding two de�nitions seem simple and straightforward. Yet, with virtually

any idea one encounters in statistics, it is possible to blunder seriously (and obviously)
if one tries to apply the idea mechanically. The danger is especially great if one is given
the mechanical rule without being told the idea that produced it. For example, consider
the following de�nition.

De�nition 1.9 (Inclusive Range) For a set of numbers Xi, the inclusive range is the
difference between the upper and lower real limits, i.e., the largest possible difference
between the highest and lowest numbers underlying the reported values.

This is an extremely simple notion, yet it is considered too complex by some text-
book writers, who instead report the following �simpli�ed� de�nition.

De�nition 1.10 (Inclusive Range B) For a set of numbers Xi, the inclusive range is

Xmax �Xmin + 1

where Xmax is the highest nominal value, and Xmin is the lowest nominal value.

For example, Glass and Hopkins, (1996, p. 16, footnote 3), report such a de�nition.

Some statisticians de�ne the range asXmax�Xmin+1, so that it extends from the upper
real limit of Xmax (i.e., Xmax + :5), to the lower real limit of Xmin (i.e., Xmin � :5).
(Glass and Hopkins, 1996, p. 16)

This �simpli�ed� de�nition is easy to use. Indeed, it is the only de�nition for the
inclusive range given in most textbooks. Yet, it is often inconsistent with the original
de�nition, and can lead to gross errors, as we see in the next example.

Example 1.5 (Weighing Trucks) Suppose 5 trucks stop by a roadside weigh station,
where the scales report a weight rounded to the nearest 100 pounds. The trucks' weights
are reported as 14200, 16400, 19100, 22400, and 22700. What is the inclusive range for
these data?

The answer would seem to be straightforward. The lightest truck is reported to
be 14200 pounds. It could really weigh as little as 14150 pounds, however, because the
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scale rounds to the nearest 100 pounds.. The heaviest truck is reported as 22700 pounds,
but because the weights are rounded to the nearest 100 pounds, its actual weight could
be any value between 22650 and 22750 pounds. So the upper real limit for the high-
est values is 22750. Consequently, the inclusive range is 22750 � 14150 = 8600.
Note, however, that the �simpli�ed� de�nition (Inclusive Range B) gives the result
22700� 14200+ 1 = 8501. The discrepancy results from the fact that the �simpli�ed�
formula implicitly assumes that the level of round-off is always to the nearest whole
unit. If the scales weighed trucks to the nearest pound, the formula would give the cor-
rect answer. In many cases, this assumption is clearly inappropriate, and consequently
so is the �simpli�ed� formula.
One might consider replacing the de�nition with an improved one. Instead ofXmax�

Xmin + 1 use the new de�nition Xmax �Xmin + L where L is the �level of rounding
off.� So, for example, if trucks are weighed to the nearest hundred pounds, L = 100
and we obtain the correct answer. Indeed, this �improved simpli�ed formula� makes far
more sense than the one it replaces. Moreover, the inclusion of the variable L instead
of the constant 1 starts to hint at the conceptual foundation of the formula.
One might ask how could a formula that is so clearly inadequate be printed in so

many places. It seems so obvious that an equally simple and obviously superior for-
mula is available! It is obvious now, because you understand the rationale on which the
original, inadequate, �simpli�ed� formula was based. Many people who were taught
this formula were never told the rationale on which it was based. The very straightfor-
ward lesson here is that, if you do not understand why you are doing something, it is
easy to apply a formula in a situation where it is simply incorrect. The idea behind �in-
clusive� range is that it calculates a range of values which, if there is no reporting error,
is wide enough to cover all real values. That simple enough idea has been replaced in
the minds of many students (and teachers) of statistics with a formula,Xmax�Xmin+1.
To many math phobics, formulas are more impressive than the ideas underlying them.
They are more �mathematical,� more concrete, more easily memorized. Ironically, their
use can be anxiety reducing.
But our lesson is not over! Actually, the new and improved �simpli�ed� formula

Xmax �Xmin + L does not always work either, as we see in the next example.

Example 1.6 (Percentage Grades) Suppose I give a multiple-choice examwith a large
number of questions, and I round the grades to the nearest whole percent. The grades
for 5 students are 86,72,100,59,68. What is the inclusive range for these data?

Either of the two �simpli�ed� formulas gives 100 � 59 + 1 = 42. However, this
result is not correct. The actual answer is 41:5. Do you see why? Ponder this a minute
before reading the next paragraph.
The reason why the answer is 41:5 is that the maximum nominal value of 100 percent

has an upper real limit of 100, not 100:5. It is not possible to have more than 100 percent
right on an exam, so a nominal value of 100 could stand for a real value of at most 100.
On the other hand, the lowest nominal value of 59 could have been rounded up from
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Table 1.10: Number of Votes Received by the Winning Candidates � 1990 Connecticut Con-
gressional Elections

Name Number of Votes
Kennelly 126; 343
Gedjenson 103; 945
DeLauro 89; 742
Shays 106; 396
Franks 93; 041
Johnson 138; 758

a value as low as 58:5, so the inclusive range is 100 � 58:5 = 41:5. Here is another
example with a similar message.

Example 1.7 (Inclusive Range with Discrete Data) In the 1990 U.S. Congressional
elections, there were 6 representatives elected in the state of Connecticut. Their names,
and the number of votes they obtained, are given in Table 1.10. What is the inclusive
range for the number of votes in these data? The answer is 138; 758�89; 742 = 49; 016.
Since these data are not continuous, the real limits are identical to the nominal limits.
One cannot obtain half a vote. Assuming no error in the vote count, the range of values
can be computed exactly here. Consequently, only the second �simpli�ed formula� is
appropriate. In this case, L = 0 since there is absolutely no round-off error.

Even in a comparatively simple situation, formulas are not enough. To produce in-
telligent answers across a reasonable variety of circumstances, you have to understand
the ideas that generated the formulas. We have illustrated this point here in a context
where, admittedly, the consequences of error are relatively trivial. However the lesson
holds across the whole range of statistical practice, often in cases where negative con-
sequences of a �cookbook� approach can be far from trivial. As you pursue the study of
statistics, try to approach the material with a critical mindset. In particular, always try to
master the ideas that underly the formulas. In some cases we will cover later, you will
discover that, if you know the underlying ideas, you actually don't need the formulas.
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1.6 Exercises
1. Suppose you are measuring weights of a group of individuals on a scale that mea-
sures in pounds. Unfortunately, following the installation of a new rubber mat on
the scale, it was not �zeroed� properly, and so each person's weight has a pound
added on to it. Assuming that the scale is otherwise in working condition, what
level of measurement will the recorded weights achieve?

2. Suppose every watch in North America suddenly started running exactly twice as
fast as before. What level of measurement would time be be measured at by these
watches?

3. Suppose you are planning to study amount of weekly alcohol consumption by
teenagers as a function of socioeconomic status of their parents. What level of
measurement can you expect to achieve in measuring your independent and de-
pendent variables?

4. Suppose you have a list of numbers that are at the ratio level of measurement, and
you cube each number (i.e., raise it to the third power). What level of measurement
will your numbers now achieve?

5. Suppose you have a list of numbers that are at the interval level of measurement,
and you square each number. What level of measurement will your numbers now
achieve?

6. Suppose you have numbers that are at an interval level of measurement, and you
modify them by subtracting 3 from all of the numbers. What level of measurement
will they now achieve?


